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ABSTRACT 

In this paper, for the first time, the bending and free vibration analysis of porous functionally graded sandwich 

(PFGS) plates is investigated using a higher-order shear deformation theory (HSDT) C0 type and finite element 

model. This construction consists of a single homogenous ceramic core and two distinct functionally graded skins. 

The mechanical results related to bending and free vibration behaviours of it are searched using the Matlab 

software. The other plates with different materials or arbitrary forms can use this code as well in the future. To 

verify the procedure's potential of use, the study's findings are contrasted with those of previous studies in the 

literature. Additionally, the effects of a number of parameters on the bending and vibration of PFGS plates are 

provided, including the porosity factor, volume fraction index, and geometric ratio. These results show that the 

distribution of porosity plays a significant role in the mechanical properties of PFGS plates. 

Keywords: Sandwich plate; functionally graded material; porosity; finite element analysis 

 
1.0 INTRODUCTION 

These days, many modern fields have specific criteria that traditional materials' mechanical qualities do not 

meet. A team of Japanese scientists developed very advantageous functionally graded materials in 1984. 

Following that, these smart materials have been used much more frequently. This material offers a continuous 

variation of properties from the top surface to the bottom surface and it is composed of a metal and ceramic blend. 

There are now more applications in the fields of nuclear power plants, defense engineering, aerospace and 

submarine engineering, etc. In general, analytical solutions [1-4] have always had limitations. Because of the 

shear locking free, the third-order shear deformation plate theories are precise and efficient substitutes. A 

straightforward third-order shear deformation plate theory was recently provided by Shi [5] to examine the static 

behaviours of beam/plate constructions. It has been suggested that the outcomes produced by this theory are more 

applicable than others. On the other hand, structural analyses typically employ numerical approaches. A unified 

and integrated strategy for the enhancement of the Felippa Bergan triangular element from thin to thick plates was 

provided in [6]. The suggested element produced satisfactory results in the common benchmark issues for 

isotropic plates and sandwich plates with functionally graded materials, free of locking, and an appropriate rank. 

A higher-order layerwise finite element formulation for static and dynamic assessments of sandwich plates made 

of functionally graded materials was described in [7]. To maintain continuity of displacement at the layer interface, 

a higher-order displacement field was postulated for the core and a first-order displacement field for the top and 

bottom face sheets. In this work, an eight-noded isoparametric element with thirteen degrees of freedom per node 

has been investigated for two configurations of sandwich plates with functionally graded materials utilizing a C0-

based finite element formulation. Additionally, the research [8–15] provided multiple applications of various 

theories to the study of functionally graded sandwich structure bending, free vibration, and buckling. Conversely, 

the authors of [16–18] investigated how material uncertainties affect the bending and vibration characteristics of 

sandwich plates with functional grades. They also concentrated on the study of stress and deformation, or the 

extension of the unified formulation of Carrera in polar coordinates of such studies. The works [19–22] also 

introduced a new model for the fully coupled thermo-mechanical static analysis of multilayered plates with 

embedded functionally graded material layers, either skins or core layers, under mechanical or thermal loads. This 

new model could be used with the Navier approach, the Fourier series, the Mori-Tanaka estimates, or a new 

inverse trigonometric shear deformation theory. Furthermore, prior research [23–26] has demonstrated the 

benefits of the four-node quadrilateral element in the analysis of plate and shell structures. These could be viewed 

as particular examples of how analysis might be extended to include constructions that use smart materials. Last 

but not least, the phenomena of shear locking, membrane locking, or hourglass in finite element analysis of plate 
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and shell structures have also been introduced in depth in some previous investigations [27–30], like opening up 

the right path in structural calculation. 

Back to this study, the finite element procedure for PFGS plates based on Shi's theory with C0 form is the main 

task. More specifically, this theory was proposed in [5], accompanied by analytical solutions obtained and verified 

for accuracy when compared with 3D elastic solutions. However, the author applied Shi theory combined with 

the finite element algorithm related to C0 form to produce numerical solutions, as presented in [11], for the 

structural analysis of plates made of functionally graded materials. The novelty here is the attempt to extend 

Matlab code for the analysis to PFGS plates, by considering the influence of porosity. The next parts of this paper 

are given as follows. The concept of material, including two cases of porosity, the change of material properties, 

and the procedure for static bending and frequency analyses, are presented in Part 2. The numerical results are 

shown in Part 3, and some comments are presented in the last part. 

 

2.0 FORMULATION 
Firstly, Figure 1 shows a plot of a sandwich plate that has been functionally graded. The z-axis is perpendicular 

to the xy-plane, which is the plate's mid-plane. Additionally, its structure consists of one homogenous ceramic 

core and two distinct functionally graded skins. 
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                                                        a) 3D illustration                b)  cross section 
Figure 1. The functionally graded sandwich plate with two face sheets and one ceramic core 

 

 The study examines two situations of porous distribution: i) type I with even porous face sheets; and ii) type 

II with linear-uneven porous core, based on the appearance of porosity related to the porosity factor e in this 

structure. For two varieties, the material properties M(z) are provided:  
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                       a)  Type I                                                                          b) Type II 

Figure 2. The modification of E with e = 0.1 for Type I & II and ratio of the thicknesses [1/1/1] 

 

  
a)  Type I                                                                            b) Type II 

Figure 3. The modification of E with n = 5 for Type I & II and ratio of the thicknesses [1/1/1] 

 

Three digits, such as "t1 / t2 / t3," indicate the ratio of the thicknesses of the top, bottom, and core layers. 

h.t1 / (t1 + t2 + t3) represents the bottom skin, h.t2 / (t1 + t2 + t3) represents the core layer, and h.t3 / (t1 + t2 + t3) 

represents the top skin. Figures 2 and 3 show the variation of E by changing the material parameters of the 

sandwich plate Al/Al2O3 + Al2O3 + SUS304/Al2O3 for both Types I and II.  

With two additional variables added, the displacement field can be expressed in terms of C0-HSDT based on 

Shi's theory [5] and a slight modification [11]. To compute a low-order quadrilateral element with four nodes, all 

that is needed is the first derivative of transverse displacement. The unknown variables are currently shown as 

follows: 
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(5) 

  
With these seven unknowns, three displacements and four rotations due to the bending and shear effects, the 

displacement-strain relations can be written in matrix form. 
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The constitutive equation is expressed as 
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The generalized displacements can hence be approximated as 

 

0 e=u Nq  (12) 
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are the unknown displacement vector and the shape function vector. The strain can be rewritten as 
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The components of forces and moments can be introduced as 
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Given the normal forces, shear force, bending moments, and higher-order moments acting on a plate, the total 

strain energy may be calculated using 
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The bending solutions can be obtained by solving the following equation 
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On the other hand, the kinetic energy is written as 
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Then, the mass matrix of element is given by  
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The frequency equation can be solved by   

 

( )2-ω = 0K M d  (30) 

 

3.0 NUMERICAL SOLUTIONS 
To verify the application of this procedure, the square structure, b/a = 1, a/h = 10, with fully simply supported 

(SSSS) and made of Si3N4/SUS304, is tested with a uniform load q. Besides, the mesh 20 x 20 is used in this paper 

for all examples. The material properties are presented in Table 1. The dimensionless centre deflections 

( )3 4

cw = 100w / 12 1- 2

m mE h v qa     
 can be obtained and compared with the analytical solutions from [12] in 

Table 2. As expected, the present numerical results reveal good agreements with reference exact solutions.  

Now, a functionally graded sandwich plate, b/a = 1, with one homogenous ceramic core of ZrO2 and two 

functionally graded skins of Al/ZrO2 is studied. Young’s modulus of ZrO2 and Al are shown in Table 1, while the 

Poisson’s ratio is constant at 0.3, and the ratio a/h equals to 10. The (SSSS) condition is used and the plate is 

subjected to sinusoidal load qs. The dimensionless centre deflection is computed as in the following formula 

  2

cw = 10w /o sE h q a    with Eo = 1GPa. Table 3 shows the comparison of these values under Type I by changing 

the porosity factor e with the results from paper [13] using an analytical solution. It is obvious that these numerical 

results approximate to the results of [13], respectively. 

Furthermore, the numerical solutions for bending analysis of functionally graded sandwich plates, b/a = 1, 

a/h = 10, contain one homogenous ceramic core of Al2O3, one bottom skin of Al/Al2O3 and one top skin of 

SUS304/Al2O3 . The material properties of SUS304 are changed by Et = 207 GPa,  = 0.3. The effective Young’s 

modulus is also demonstrated in Figures 2 and 3. Table 4 shows the dimensionless centre deflections of fully 

clamped (CCCC) plates under Type II by changing the porosity factor e. It is clearly seen that as e increases, the 

deflection increases due to the decrease in structural stiffness, except for the case [1/0/1] because there is no longer 

a middle core.   

 

Table 1: The material properties 

SUS304 Em = 207.79GPa,  = 0.3176 

Si3N4 Ec = 322.27GPa,  = 0.24 

ZrO2 Ec = 151GPa,  = 0.3 

Al Em = 70GPa,  = 0.3 

Al2O3 Ec = 380GPa,  = 0.3 

 

Table 2: The comparison of dimensionless center deflections 

w  

n = 0.5      n = 1      n = 5    n = 10 

[12] Present [12] Present [12] Present [12] Present 

0.325 0.325 0.343 0.346 0.380 0.384 0.396 0.399 

 

Table 3: The comparison of the dimensionless center deflection with porosity related to Type I,  

n = 2, b/a = 1, (SSSS) condition and material properties of Al/ ZrO2 + ZrO2  

E Comparison [1/0/1] [1/1/1] [2/2/1] 

0 
Present  0.3636 0.3193 0.3012 

[13] 0.3732 0.3328 0.3116 

0.1 
Present 0.4251 0.3603 0.3342 

[13] 0.4415 0.3840 0.3596 

 

Table 4: The dimensionless center deflection with porosity related to Type II, n = 2, b/a = 1, (CCCC) condition 

and material properties of Al/Al2O3 + Al2O3 + SUS304/Al2O3 

e [1/0/1] [1/1/1] [2/2/1] 

0 0.0697 0.0556 0.0565 

0.1 0.0697 0.0560 0.0570 

0.2 0.0697 0.0563 0.0574 

0.3 0.0697 0.0567 0.0580 
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On the other hand, for frequency analysis, a functionally graded sandwich plate, b/a = 1, a/h = 10, contains 

one homogenous ceramic core of Al2O3, and two skins of Al/Al2O3 are considered. Some further material properties 

are given as core = 3800 kg/m3, bottom = top = 2707 kg/m3. The first dimensionless frequencies 
2

0

0

=
a

h E


 

 

related to Type I, n = 2, (SSSS) condition and based on this procedure, by changing e, are calculated and compared 

with other solutions from [14]. Note that 0 = 1, E0 = 1GPa. Table 5 shows that these numerical results approximate 

to those of [14].  Besides, the first six mode shapes for this plate with case of ratio of the thicknesses [1/1/1] and 

e = 0.1 are also depicted in Figure 4. The disappearance of spurious modes in vibration analysis can be considered 

as an advantage of this proposed method. The errors are not large due to different approaches, so they can be 

ignored in this study. 

 

Table 5: The comparison of the first dimensionless frequency with porosity related to Type I,  

n = 2, b/a = 1, a/h = 10, (SSSS) condition and material properties of Al/Al2O3 + Al2O3  

E Comparison [1/0/1] [1/1/1] [2/2/1] 

0 
Present  1.0867 1.2112 1.2548 

[14] 1.0616 1.1885 1.2139 

0.1 
Present  1.0314 1.1499 1.2252 

[14] 0.9826 1.1207 1.1819 

0.2 
Present 0.9013 1.0782 1.1625 

[14] 0.8787 1.0420 1.1105 

 

Table 6: The first dimensionless frequency with porosity related to Type II, n = 2, b/a = 1, a/h = 10, (CCCC) 

condition and material properties of Al/Al2O3 + Al2O3 + SUS304/Al2O3 

e [1/0/1] [1/1/1] [2/2/1] 

0 1.8595 2.1636 2.2579 

0.1 1.8595 2.1713 2.2689 

0.2 1.8595 2.1790 2.2799 

0.3 1.8595 2.1866 2.2910 

 

   
# 1 # 2 # 3 

   
# 4 # 5 # 6 

Figure 4. The first six mode shapes for functionally graded sandwich square plate with ratio of the thicknesses 

[1/1/1], Type I, material properties of Al/Al2O3 + Al2O3, n = 2, e = 0.1 and (SSSS) condition. 
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# 1 # 2 # 3 

   
# 4 # 5 # 6 

Figure 5. The first six mode shapes for functionally graded sandwich plate with b/a = 4, a/h = 10, ratio of the 

thicknesses [2/2/1], Type II, material properties of Al/Al2O3 + Al2O3 + SUS304/Al2O3, n = 2, e = 0.1 and 

(CCCC) condition. 

 

Finally, the first dimensionless frequencies by changing porosity factor e for a functionally graded sandwich 

plate related to Type II, n = 2, b/a = 1, a/h = 10, (CCCC) condition and material properties of  

Al/Al2O3 + Al2O3 + SUS304/Al2O3 are presented in Table 6. Note that core = 3800 kg/m3, bottom = 2707 kg/m3 

and top = 8166 kg/m3 for this analysis. Figure 5 demonstrates the first six mode shapes of this plate by replacing 

b/a from 1 to 4 and e equals 0.1 for another view. 

 

4.0 CONCLUSION 
Using the recommended element in the numerical investigation has several benefits within the context of the 

C0-HSDT model. This study has successfully applied the analysis of PFGS plates and provided results without 

needing shear-correct factors. It is additionally pointed out that this C0-HSDT related element does not require a 

large computing cost as it just makes use of bilinear function approximations. Besides, after performing numerical 

instances, it is discovered that this element does not exhibit shear locking or the hourglass phenomenon; thus, it 

produces results that are satisfactory when compared to other published solutions from earlier studies. The 

computational approximation of this procedure and the influences of various parameters like porosity factor, 

volume fraction index, or geometric ratio on the bending and vibration of PFGS plates are also studied. Moreover, 

this paper helps to supplement the knowledge of engineers in reality. Last but not least, in the near future, this 

element type can be further extended to the geometrically nonlinear analysis of plate or shell structures. 
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