Simulation of wire and arc additive manufacturing of 308L stainless steel with cold arc gas metal arc welding

Authors

  • Nur Izan Syahriah Hussein Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Durian Tunggal, Melaka, Malaysia
  • Nur Aisyah Nabilah Mohd Jmmani Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Durian Tunggal, Melaka, Malaysia
  • Mohamad Nizam Ayof‬ Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Durian Tunggal, Melaka, Malaysia
  • Toibah Abd Rahim Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Durian Tunggal, Melaka, Malaysia
  • Muhammad Zaimi Zainal Abidin Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Durian Tunggal, Melaka, Malaysia
  • Farazila Yusof Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia.
  • Mohd Fadzil Jamaludin Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia.
  • Stewart Williams Welding Engineering & Laser Processing Centre, Cranfield University, Cranfield, United Kingdom

DOI:

https://doi.org/10.24191/jaeds.v1i1.35

Keywords:

Wire and Arc Additive Manufacturing, Gas Metal Arc elding, coldArc, Stainless Steel 308L, Stainless Steel 304L, Design of Experiment, Taguchi Method

Abstract

This research focuses on the capabilities of coldArc GMAW in the behavior of heat input to the weld bead dimension. In this study, the effect of process GMAW of 308L stainless steel filler wire with a thickness of 1.2 mm and 304L stainless steel base plate, with a dimension of 120 mm x 25 mm x 10 mm (height x width x thickness) by applying WAAM. The data was collected using MATLAB of a Smart Weld Rosenthal’s Steady-State 3D Isotherms. A Taguchi response was used in the DOE method with Minitab software to analyze the effect of process parameters on height, width, and depth of weld bead dimension during GMAW. The experiments were conducted following the low, mid, and high input parameters will show the different structures of weld bead dimension, which include 70 A, 75 A, and 78 A (arc current), 15 V, 16 V, and 17 V (voltage), 400 mm/min, 600 mm/min, and 800 mm/min (welding speed). Hence, the optimum value is 75 A, 16 V, and 800 mm/min, and the most significant parameters to deposit stainless steel with coldArc GMAW were welding speed followed by arc current and voltage.

Downloads

Download data is not yet available.

References

V. T. Le, D. S. Mai, T. K. Doan and H. Paris, “Wire and arc additive manufacturing of 308L stainless steel components: Optimization of processing parameters and material properties,” Eng. Sci. Technol. an Int. J., vol. 24, no. 4, pp. 1–12, 2021, doi: 10.1016/j.jestch.2021.01.009.

J. Müller et al., “Design and parameter identification of wire and arc additively manufactured (WAAM) steel bars for use in construction,” Metals (Basel)., vol. 9, no. 7, 2019, doi: 10.3390/met9070725.

E. Karayel and Y. Bozkurt, “Additive manufacturing method and different welding applications,” J. Mater. Res. Technol., vol. 9, no. 5, pp. 11424–11438, 2020, doi: 10.1016/j.jmrt.2020.08.039.

L. Ji, J. Lu, C. Liu, C. Jing, H. Fan, and S. Ma, “Microstructure and mechanical properties of 304L steel fabricated by arc additive manufacturing,” MATEC Web Conf., vol. 128, 2017, doi: 10.1051/matecconf/201712803006.

T. A. Rodrigues, V. Duarte, R. M. Miranda, T. G. Santos, and J. P. Oliveira, “Current status and perspectives on wire and arc additive manufacturing (WAAM),” Materials (Basel)., vol. 12, no. 7, 2019, doi: 10.3390/ma12071121.

J. Wanwan, Z. Chaoqun, J. Shuoya, T. Yingtao, W. Daniel, and L. Wen, “Wire Arc Additive Manufacturing of Stainless Steels: A Review,” Appl. Sci., 2020.

J. Stuzer, T. Totzauer, B. Wittig, M. Zinke, and S. Juttner, “GMAW Cold Wire Technology for Adjusting the Manufactured Duplex Stainless Steel Components,” Metals (Basel)., vol. 9, no. 5, pp. 564–583, 2019.

Ivántabernero, A. Paskual, P. Álvarez, and A. Suárez, “Study on Arc Welding Processes for High Deposition Rate Additive Manufacturing,” Procedia CIRP, vol. 68, no. April, pp. 358–362, 2018, doi: 10.1016/j.procir.2017.12.095.

J. W. Elmer and G. Gibbs, “The effect of atmosphere on the composition of wire arc additive manufactured metal components,” Sci. Technol. Weld. Join., vol. 24, no. 5, pp. 367–374, 2019, doi: 10.1080/13621718.2019.1605473.

S. D. Sabdin, N. I. S. Hussein, M. K. Sued, M. N. Ayof, M. S. Ayob, and M. A. S. Abdul Rahim, “Weld bead reinforcement on cold rolled carbon steel sheet joint using ColdArc technology,” Proceedings of the Mechanical Engineering Research Day 2018, 2018, pp. 197–198, 2018.

N. Ghosh, P. K. Pal, and G. Nandi, “GMAW dissimilar welding of AISI 409 ferritic stainless steel to AISI 316L austenitic stainless steel by using AISI 308 filler wire,” Eng. Sci. Technol. an Int. J., vol. 20, no. 4, pp. 1334–1341, 2017, doi: 10.1016/j.jestch.2017.08.002.

S. D. Sabdin, N. I. S. Hussein, M. K. Sued, M. S. Ayob, M. A. S. A. Rahim, and M. Fadzil, “Effects of ColdArc welding parameters on the tensile strengths of high strength steel plate investigated using the Taguchi approach,” J. Mech. Eng. Sci., vol. 13, no. 2, pp. 4846–4856, 2019, doi: 10.15282/jmes.13.2.2019.06.0403.

F. Michel, H. Lockett, J. Ding, F. Martina, G. Marinelli, and S. Williams, “A modular path planning solution for Wire + Arc Additive Manufacturing,” Robot. Comput. Integr. Manuf., vol. 60, no. April, pp. 1–11, 2019, doi: 10.1016/j.rcim.2019.05.009.

S. Ríos, P. A. Colegrove, F. Martina, and S. W. Williams, “Analytical process model for wire + arc additive manufacturing,” Addit. Manuf., vol. 21, no. August 2017, pp. 651–657, 2018, doi: 10.1016/j.addma.2018.04.003.

N. V Amudarasan, K. Palanikumar, and K. Shanmugam, “Impact behaviour and Micro Structural Analysis of AISI 316L Stainless Steel Weldments,” Int. J. Appl. or Innov. Eng. Manag., vol. 2, no. 6, pp. 269–272, 2013.

S. Manokruang, F. Vignat, M. Museau, and M. Linousin, “Model of weld beads geometry produced on surface temperatures by Wire and Arc Additive Manufacturing (WAAM),” IOP Conf. Ser. Mater. Sci. Eng., vol. 1063, no. 1, p. 012008, 2021, doi: 10.1088/1757-899x/1063/1/012008.

N. A. Rosli, M. R. Alkahari, M. F. bin Abdollah, S. Maidin, F. R. Ramli, and S. G. Herawan, “Review on effect of heat input for wire arc additive manufacturing process,” J. Mater. Res. Technol., vol. 11, pp. 2127–2145, 2021, doi: 10.1016/j.jmrt.2021.02.002.

N. A. Rosli, M. R. Alkahari, F. R. Ramli, M. N. Sudin, and S. Maidin, “Influence of Process Parameters in Wire and Arc Additive Manufacturing (WAAM) Process,” J. Mech. Eng., vol. 17, no. 2, pp. 69–78, 2020.

J. L. Prado-Cerqueira et al., “Analysis of favorable process conditions for the manufacturing of thin-wall pieces of mild steel obtained by wire and arc additive manufacturing (WAAM),” Materials (Basel)., vol. 11, no. 8, 2018, doi: 10.3390/ma11081449.

P. Long, D. Wen, J. Min, Z. Zheng, J. Li, and Y. Liu, “Microstructure evolution and mechanical properties of a wire-arc additive manufactured austenitic stainless steel: Effect of processing parameter,” Materials (Basel)., vol. 14, no. 7, 2021, doi: 10.3390/ma14071681.

M. Liberini et al., “Selection of Optimal Process Parameters for Wire Arc Additive Manufacturing,” Procedia CIRP, vol. 62, pp. 470–474, 2017, doi: 10.1016/j.procir.2016.06.124.

A. Waqas, X. Qin, J. Xiong, H. Wang, and C. Zheng, “Optimization of process parameters to improve the effective area of deposition in GMAW-based additive manufacturing and its mechanical and microstructural analysis,” Metals (Basel)., vol. 9, no. 7, 2019, doi: 10.3390/met9070775.

F. Montevecchi, G. Venturini, A. Scippa, and G. Campatelli, “Finite Element Modelling of Wire-arc-additive-manufacturing Process,” Procedia CIRP, vol. 55, pp. 109–114, 2016, doi: 10.1016/j.procir.2016.08.024.

L. M. Wahsh et al., “Parameter selection for wire arc additive manufacturing (WAAM) process,” Mater. Sci. Technol. 2018, MS T 2018, no. January 2019, pp. 78–85, 2018, doi: 10.7449/2018/MST_2018_78_85.

R. A. Ribeiro, P. D. C. Assunção, E. B. F. Dos Santos, A. A. C. Filho, E. M. Braga, and A. P. Gerlich, “Application of cold wire gas metal arc welding for narrow gap welding (NGW) of high strength low alloy steel,” Materials (Basel)., vol. 12, no. 3, 2019, doi: 10.3390/ma12030335.

V. K. Modi and D. A. Desai, “Review of Taguchi Method, Design of Experiment (Doe) & Analysis of Variance (Anova) for Quality Improvements Through Optimization in Foundry,” vol. 5, no. 1, pp. 184–194, 2018.

Downloads

Published

2021-10-13

How to Cite

Hussein, N. I. S. ., Mohd Jmmani , N. A. N., Ayof‬ , M. N. ., Abd Rahim, T., Zainal Abidin , M. Z. ., Yusof , F. ., Jamaludin, M. F., & Williams, S. (2021). Simulation of wire and arc additive manufacturing of 308L stainless steel with cold arc gas metal arc welding. Journal of Applied Engineering Design and Simulation, 1(1), 88-96. https://doi.org/10.24191/jaeds.v1i1.35